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On the Multiplicity of Resolution Equations in the 
Chromatographic Literature 

A. S. SAID 
CHEMICAL ENGINEERING DEPARTMENT 
UNlvERSITy OF TEHERAN 
TEHERAN, IRAN 

Abstract 

It is shown that, in spite of the multiplicity of resolution equations in the 
literature, there are only three basic relations: the Purnell, b o x ,  and Said 
equations of resolution. 

The Giddings equation for peak capacity in its differential form may also be 
extended to include resolution, leading to an alternative definition for it in 
which the width log mean average is used instead of the width arithmetic 
average. This definition is based on the continuity of peak width variation along 
the column and leads to numerical answers practically identical with those based 
on the original definition. 

This new definition of resolution, which is not an approximation of the origi- 
nal one but stands on its own merits, gives strength to an already deduced and 
simple peak capacity equation, which was thought to be approximate, as being 
exact. This eliminates the necessity of lengthy algebraic derivations leading to 
complicated equations which give no more than the results obtained by the 
simple peak capacity equation. 

Alternate resolution equations which are simple and exact were derived and a 
chart for the separation efficiency ql:l as a function of the number of theoretical 
plates N a n d  the separation factor a’ was prepared. The resolution R, can be 
read on an extra scale in the plot. This chart may be used as a substitute for 
the controversial Glueckauf chart. 

The average plate number N used in the resolution equation was studied when 
Nl # Nt. The study leads to the conclusion that due to the large uncertainties in 
both the experimental and theoretical determination of N, any suggestion for 
N., other than the simple arithmetic average cannot be justified. 

Some erroneous equations and conclusions in the literature concerning 
resolution and peak capacity are pointed out. 
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I N T R O D U C T I O N  

There are many resolution equations in the literature. They may look 
different because they are written in different forms using different nota- 
tions, but all of them belong to three basic equations. References I-7 
represent only a partial list of these equations. 

We will be concerned only with the development of a resolution equa- 
tion for two overlapping Gaussian peaks. The base width of each peak 
w varies with its retention volume Band the number of theoretical plates 
N according to 

o is the standard deviation of the peak. 
Equation (1) follows from different theories of chromatography such 

as the plate theory developed by Martin and Synge (8) and amplified by 
this author (9), and the random walk theory developed by Giddings (10). 

Another fundamental equation is the internationally accepted definition 
for resolution : 

in which w, is the peak width arithmetic average. 
We will assume that N is the same for Components 1 and 2. Whether it 

is equal to N 2 ,  N , ,  or any of their averages goeq under this assumption, 
which may be expressed mathematically as 

N ,  = N2 = N (3) 
The question concerning which N to use will be discussed separately in 

a later section. 

T H E  THREE BASIC R E S O L U T I O N  E Q U A T I O N S  

In spite of the multiplicity of resolution equations in the literature, 
authors agree on the three well-known or basic resolution equations (ZZ) ; 
the Purnell (I), the Knox (2), and the Said (3) equations. For example, the 
equation in Ref. 4 is a Said equation while that in Ref. 5 is a Purnell equa- 
tion. 

In order to make this study as complete and useful as possible, a brief 
mention of the steps involved in the development of these equations is 
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MULTIPLICITY OF RESOLUTION EQUATIONS 649 

presented here. Beside the three fundamental Eqs. (I), (2),  and (3), the 
following well-known relations are also required for the derivation of the 
three basic resolution equations : 

- 
Vz = Vo(1 + k,) 
Vl = Vo(l + k l )  

where V,  is the void (air) peak retention volume and kl  and k, are the 
respective capacity factors for Components 1 and 2. 

From Eq. (1) one gets 

(6) 
- -  
V2lVl = W Z h  

The distribution ratio Kis related to the capacity factor k by the formula 

V S  

V m  
k = K -  

where Vs and Vm are the stationary and mobile phase volumes, respec- 
tively. 

The Purnell Equation 

This is the first resolution equation in terms of a, N ,  and k, and the one 
usually referred to in the literature as “the well-known resolution equa- 
tion.” Quantity a is the capacity factor ratio 

a = k, /k ,  = KzlKl 

In the Purnell derivation, the following approximation in Eq. (2) was 
made : 

= w, w1 + w2 
2 

In this case Eq. (2) becomes 

Substituting from Eqs. (l), (4), (9, and (6) into Eq. (T), one gets 

Introducing other parameters such as Ak for k, - k,, n for wl/wz or 
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KVJV, for k ,  the Purnell equation may be written in several other forms 
(Appendix I). 

The Knox Equation 

Here, the following approximation in Eq. (2) was made: 

w1 + w2 
2 = w 1  

So that Eq. (2) becomes 

(9) 

and similarly, by substituting from Eqs. (l), (4), (5) ,  and (6) into Eq. (2") 
gives 

In spite of the simplicity of the Knox equation, it is not as widely quoted 
as the Purnell equation. 

The Said Equation 

In this case no approximation is made in Eq. (2). By substituting from 
Eqs. (l), (4), (5) ,  and (6)  into Eq. (2),  one gets 

(1 1) 
JN U - 1  - J N u - 1  k 

2 --TzTrn 
U + l + -  

kl 

R' = - 
" 2  

where 

k = ( k ,  + k2)/2 (12) 
With little algebraic manipulation, the Said equation (Eq. 11) may also 

be written in several other forms (Appendix 11). 

SEPARATION EFFl CI E N CY 

The efficiency of a separation is often related to the purity of the frac- 
tions obtained. The resolution concept as given by Eq. (2) does not 
express the fractional impurity directly. 
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MULTIPLICITY OF RESOLUTION EQUATIONS 65 I 

FIG. 1. Two overlapping Gaussian and equal chromatographic peaks with the 
cut at equal fractional impurity. 

A relation exists between R, and the separation efficiency ql : l  for two 
equal and overlapping Gaussian chromatographic peaks. Here, q 1  :1, as 
defined by Glueckauf ( I2) ,  is the fractional impurity when a cut is made 
such that the fractional impurity is the same on both sides of the cut. This 
author showed (13) that the same value obtained for ql:, may be used 
without modification and with little error for two unequal and overlapping 
Gaussian peaks. By “two chromatographic - peaks” it is meant that Eq. (6)  
is also satisfied as in Fig. 1 where V,V, represents the cut for equal impurity 
ratios on both sides. It should be noted that it does not pass by the point 
of intersection for two equal and overlapping Gaussian chromatographic 
peaks. It is displaced a little toward the fast moving peak. 

For equal impurities the arguments of the two normal distributions must 
be equal so that 

t ,  = t2 = t (13) 

or 
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This leads to 

and therefore 

or 

A(t )  is the area under the normal curve of error (error integral) as given 
by the relation 

dt = Q e-  9 1 2  

and 
A- ' (Q)  = 1 

is the inverse error integral inasmuch as the log function is the inverse of 
the exponential function. Both the error and inverse error integral are 
tabulated in the literature (14). 

Equation (16) shows that ql:l vs R, is a straight line plot on probability 
graph paper as in Fig. 2. By substituting from Eq. (1 1) into Eq. (16), one 
gets the separation efficiency equation in terms of N,  u, and k,  so that 

POSIT ION OF T H E  C U T V c  FOR 
EQUAL IMPURITY RATIO 

Equation (1) shows that 

Substituting into Eq. (14) gives 
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MULTIPLICITY OF RESOLUTION EQUATIONS 653 

FIG. 2. Plot of w. (16) on probability graph paper. 

which leads to 

Equation (22) shows that for an equal impurity ratio between two equal 
chromatographic and Gaussian peaks, the cut must be made at the 
harmonic average of V2 and Vl, and not at their geometric average as 
deduced by Glueckauf (12). 

PEAK CAPACITY 

Most of the credit in developing the theroretical treatment of peak 
capacity goes to Giddings. Very little has been added to what he achieved 
in his brief but excellent note (15) on the subject. 

In this study a slight modification in the definition of peak capacity n 
will be made. Here, we define n as the number of totally separated peaks 
between any two points 1 and 2 on the elution curve. By “totally separated” 
it is meant that tangents to peaks meet at the base line, in which case 
R,y = 1. 
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Injection V o i d  
peak 

1 -w - 2 
V 

Fig 3 a  

Injection Void 
peak 

I 
1 + w - +  2 

V 

Fig 3 b  

FIG. 3. Schematic representation of totally separated peaks between points 1 
and 2. 

The total peak capacity n, is the peak capacity between the void peak 
and the maximum of the last peak. Quantity n; is equal to n, + 1 so that 
n; is the total number of peaks between and including both the void pzak 
and the last peak. We also introduce the concept that n is not necessarily 
an integer. 

The mathematics needed for the peak capacity treatment is quite simple. 
One needs no more than Eq. (1) and the Giddings peak capacity funda- 
mental relation in its differential form (16). The latter may be easily 
deduced with reference to Fig. 3 as follows. 

In Fig. 3(a), the peak width w does not change with V, contrary to the 
requirement of Eq. (1). In this case the peak capacity n between points 
1 and 2 is given by 

n = AV/w (23) 

where A V  = Vz - V,. 
According to Eq. (l), w should, however, change continuously as shown 

in Fig. 3(b) and, therefore, a differential equation must be set up and 
integrated. Equation (23) in its differential form becomes 

dn = dV/w (24) 
which is the Giddings formula. Integrating between points V ,  and V,, 
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MULTIPLICITY OF RESOLUTION EQUATIONS 655 

one gets 
rv2 

n = J v, dV/w 

When w is constant, one gets Eq. (23). For the actual case where w = f(V) 
according to Eq. (I), one gets 

Equation (26) may be called the Giddings-Grushka equation. It was 
Grushka (17) who first integrated the Giddings differential equation (Eq. 
24). 

Similarly, 
.jz v, 

n, =-In- 
4 v o  

and 

where V, is the final peak retention volume. Quantities n, n,, or n: are quite 
easy to calculate from the above equations, or may be read from Fig. 4 
where n is plotted vs V 2 / V ,  on a semilog graph with ,/T as the param- 
eter. The plot is a family of straight lines meeting at the origin. 

Alternative and probably more convenient plots are given in Figs. 5A 
and 5B which plot N vs n on log-log graph paper with a’ as the parameter, 
giving a family of parallel lines. Quantity a’ = V2/ V ,  = V2/Vl = (1 + k J /  
(1 + k, ) ,  and may be called the separation factor. Of course, a plot of n 
vs N with a‘ as the parameter can also be plotted easily. 

The peak capacity n as given by Eq. (26) may be defined as the number 
of continuously widening (or narrowing) peaks between points 1 and 2 on 
the chromatogram. 

RELATION BETWEEN RESOLUTION 
AND PEAK CAPACITY 

R, is defined mathematically according to Eq. (2). With reference to the 
same equation, it may also be defined in words as being the number of 
average (arithmetic) peak widths between two neighboring peak maxima. 

If the Giddings formula (Eq. 24) is integrated between limits Vl and V2, 
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FIG. 4. Plot of Eq. (26) on semilog graph paper. 

.one gets 

In this case, and in line with the definitione given above for peak capacity, 
6 would be the number of continuously varying peak widths between the 
two neighboring peak maxima. 

Comparison of this definition with the definition deduced from Eq. (2) 
for R, shows that they are identical except for the continuity and dis- 
continuity of the peak width. This shows that Eq. (29) can be used as the 
basis for an alternative definition for resolution which may be given the 
symbol R,: 

In terms of N ,  k, and a', one gets 
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MULTIPLICITY OF RESOLUTION EQUATIONS 657 

FIG. 5A. Plot of Eq. (26) on log-log graph paper. 
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." 
1.0 2 2.5 3 I 5 6 7 8 g l 0  1.0 2 2.5 3 L 5 6 7 89100 n 
FIG. 5B. Plot of Eq. (26) on log-log graph paper. 
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MULTIPLICITY OF RESOLUTION EQUATIONS 659 

Substituting for R, from Eq. (30’) into Eq. (16) gives 

Equation (31) is a simple relation between the separation efficiency q l Z l  
and the parameters N ,  k , ,  and k,. 

Equation (30) can be rearranged as 

.A substitution from Eqs. (I) and (6) into Eq. (32) leads to 

w2 In - 
W 1  

where wl is the width log mean average. 

last form of Eq. (2): 
We now have two fundamental relations for resolution. They are the 

v, - v, 
R, = - 

wa 

and the new expression 
- 

- v2 - v1 
R, = - 

W1 
(33) 

Table 1 lists the values of wa/wl for different values of wz/wl of chroma- 
tographic interest. Listed also are the corresponding percent deviations of 
Eq. (33) from Eq. (2) and the percent deviations of Eq. (2’) (Purnell ap- 
proximation) from Eq. (2) for comparison. 

If both Eqs. (2’) and (33) are considered two different approximations 
of Eq. (2), then the error in Eq. (33) is negligibly small compared to that 
in Eq. (2’), as can be seen from Table 1.  When wz/wl (which is equal to 
a’) is equal to 1.1, the error in Eq. (33) is less than 0.1 % while the error in 
the Purnell approximation is 60 times greater. 

Equation (33), therefore, cannot be considered an approximation of 
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TABLE 1 

% Deviation 
of Eq. (33) 

from Eq. (2) 

% Deviation 
of Eq. (2’) 

from Eq. (2) 
Deviation 

ratio 

1 .00 1.oooO 0.00 0.00 
1.01 Loo00 0.00 0.50 
1.02 1 .oo00 0.00 0.98 
1.05 1.0002 0.02 2.38 
1.10 1.0008 0.08 4.55 
1.20 1.0028 0.28 8.33 

600 
300 
120 
60 
30 

Eq. (2). It is rather an alternative definition of resolution leading to 
essentially the same answers. It may be used in place of Eq. (2) for the 
purpose of convenient and &sy derivations, as in the case of peak capacity 
calculations. 

This leads us also to the important conclusion that the above treatment 
of the peak capacity using the Giddings equation is an exact treatment 
based on an alternative definition, $, of resolution no less elegant than 
the customary definition (Eq. 2) and leads to the same numerical values. 
One also concludes that the algebraic treatments, encountered in Refs. 18 
and 19 becope less important if not completely replaced by the Giddings- 
Grushka derivation (Appendix 111). 

Inasmuch as the Said equation of resolution is considered an exact 
equation (4, 20-23), Eq. (30) is also an exact resolution equation leading 
to essentially the same answers. 

We note that Rs and q1 :1 can be easily calculated from Eqs. (30) and (31), 
respectively, or they may be obtained from Fig. 6A which is identical to 
Fig. 4 except for the range on the ordinates. In other words, Fig. 6A is an 
expansion of a small area around the origin in Fig. 4. The usefulness of 
Fig. 6A was extended by adding an auxiliary scale to the right on which 
q l r l  may be read directly. The scale was prepared using Eq. (17) and tables 
of the inverse error integral (14). There is no difference between Figs. 6A 
and 6B except that in the latter, the R, and q l E 1  scales have been switched 
so that the q1 :1 scale becomes the main scale to the left and the R, scale is 
the auxiliary scale to the right. Figure 7A is a plot of N vs R, for Eq. (30) 
on a log-log graph with a’ as the parameter, giving a family of parallel 
lines as in Fig. 5. An auxiliary upper scale on which q l Z l  may be read 
directly was also prepared to increase the usefulness of the chart. Figure 
7B is the same chart as Fig. 7A except that q 1  becomes the main lower 
scale and R, is the auxiliary upper scale in Fig. 7B. 
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1:l 

v 2  1 c, 
FIG. 6A. Plot of Eq. (30) on semilog graph paper with an auxilary scale for ql:l. 
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FIG. 6B. Plot of Eq. (31) on semilog graph paper with an auxiliary scale for R,. 
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Ft 
FIG. 7A. Plot of Eq. (30) on log-log graph paper with an auxiliary scale for 
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FIG. 7B. Plot of Eq. (31) on log-log graph paper with an auxiliary scale for R. 
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THE GLUECKAUF CHART 

The Glueckauf‘ chart is a plot of the number of theoretical plates N vs 
the separation efficiency q with the separation factor a’ as the parameter. 
It suffers, however, from several drawbacks. 

The original chart contains a relation between ql: l  for two equal peaks 
and q for two unequal ones, which was shown to be incorrect by this author 
(23), who showed, however, that the two quantities are close to one 
another, thus correcting and at the same time simplifying its use. Since 
then, new charts have been published taking into account this correction 
(25, 26). Other authors (for example, in Refs. 27-29), apparently unaware 
of this correction or the reference to it in the literature (24-26, 30, 32), 
continue to publish the original uncorrected chart. 

Although not explicitly stated, the parameter used in the Glueckauf 
chart is the separation factor a’ which includes the void volume. If the 
exchange coefficient ratio c1 is used instead, then the value of N obtained 
is the number of theoretical plates when the void volume is neglected. 

The chart was based on a complicated and also approximate equation, 
and steps toward the chart’s construction are not indicated. Also, the q 
scale extends from 10-1 to which does not reflect the approximate 
nature of the equations upon which the chart was constructed. 

Aside from these drawbacks and except for large a’ values which are 
less important than small values, the chart gives results not much different 
from those obtained using the exact relation (Eq. 31). This is somewhat 
contrary to the findings of Tang and Harris (32) who recommend against 
the continued use of the Glueckauf chart. They based their conclusion 
upon significant deviations from the Purnell equation. This equation itself 
is an inexact one subject to the approximation given by Eq. (7) and there- 
fore cannot be a satisfactory reference. 

Figure 7B, while free of all the drawbacks of the Glueckauf chart, 
retains its good features and contains an extra scale for R,. It is, therefore, 
an ideal substitute for it. The Glueckauf chart may have some merit and 
may be worth saving after correction and modification, but certainly not 
the Glueckauf treatment of the plate theory. Besides being approximate, 
it is also very complicated and has long since been replaced by better 
treatments (9, 33). Some Glueckauf equations based on his treatment and 
appearing in textbooks are not well defined, lead to wrong answers, and 
are very difficult to brace in the original paper. An example of such equa- 
tions is given in Ref. 34 and discussed in Appendix IV. This author recom- 
mends against the utilization of these equations which should be deleted 
from textbooks in future editions. 
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THE AVERAGE PLATE NUMBER 

Throughout the above treatment the assumption was made that N ,  = 
N2 = N. N is the best average plate number N,, from which the subscript 
“av” was dropped for convenience. In this section and because, here, we 
are looking for this best average, the same subscript will be retained. 

Since the two exact resolution equations, Eqs. (1 1) and (30), are equiv- 
alent, we choose the one easier to handle. In this case it is Eq. (1 1) so that 

JN,,(@ - 1) R, = 
2(1 + @ + k )  

For N ,  # N,, Eq. (1) leads to 

- JN, v, =--g-w, 
and 

- JN, v 2 -  -- 4 w2 

(34) 

(35) 

Substituting from Eqs. (35), (36), (4), and (5)  into Eq. (2) leads to the 
exact resolution equation when N ,  # N2: 

From Eqs. (34) and (37) one gets the exact relation for N,, when N ,  # 
N2 : 

Plate numbers N ,  and N2 are two large numbers, and their ratio usually 
does not differ much from unity. In this case different averages differ only 
slightly from the arithmetic average No. 

At present the uncertainties in the values of N ,  and N2 determined ex- 
perimentally are much greater than the differences between their different 
averages, and until these uncertainties fall below a certain level, the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



MULTIPLICITY OF RESOLUTION EQUATIONS 667 

determination of R, and N,, using the relatively difficult Eqs. (37) and (38) 
will be unjustified. At least for the present, using N,, = Na as suggested 
by Giddings (6) is sufficient. 

For any two values such as N ,  and N ,  there are four primary or first 
averages. They are the arithmetic (N,), the log mean ( N J ,  the geometric 
(Ng),  and the harmonic (Nh) averages. They are defined by 

(39) 
1 

Na = i ( N 1  + N J  

Ng  = J”, 

Other averages can be deduced by combining any two of the first averages; 
these are called second averages. There are several of these but only two 
of them are given here as examples. 

N 1 2  + N Z 2  
Noh = 2Na - N - - N ,  + N2 (43) 

and 

4N1 Nz 
Ngh = N ,  + N ,  + 2 , / N , N ,  

Introducing two symbols y,, and p, where 

and substituting in Eq. (38) gives 

/- 
Yav (45) 

Table 2 lists the values of yau for the above first and second averages for 
two values of p, namely, P = 1.1 and 1.2. The averages are arranged in 
descending order according to their magnitudes. 
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TABLE 2 

y Values for Different Averages 

First Second 8 = 1.1 8 = 1.2 

1.0023 1.0083 

1 1 

2(1 + 8') 
(1 + 8)' Y.h -- ~ 

Yo = 1 

2(8 - 1) 0.9992 0.9912 

Y, = 1 2 dB 0.9989 0.9959 

88 0.9983 0.9938 

48 0.9977 0.9917 

Y' = (1 + 8) In 8 

+ B  

Yeh = (1 + 8x1 + 48)' 

Yh = (1 + 8)' 

Nuv/Nu or yau is a function of 8, k,, and a, as can be seen from Eq. (45). 
In Figs. SA and 8B, ya, is plotted for different values of k, and for 8 
values equal to 1.1 and 1/1.1 (Fig. 8A) and 8 values equal to 1.2 and 1/1.2 
(Fig. SB). 

The figure shows that at a = 0, yav is very close to y8h but for practical 
values of c1 and k,, you could be any of the above first and second averages. 

Vink (19) deduced an equation for Nu, which reads 

which is equivalent to Ngh as shown above. The Vink average is a function 
of N ,  and N2 only and not of k, or a, contrary to Figs. 8A and SB. The 
fact that the author was able to pinpoint a secondary average from a 
crowded spectrum of first and second averages is due to an unjustified 
approximation made in the course of the derivation. The Vink average is, 
therefore, not correct. 

Table 2 also shows that, even if the Vink average were correct, Y8h is 
too close to 1 to justify using a difficult Ngh average instead of the simple 
Na average. 

Karger (4) uses the approximation 

N a o  = Nz (47) 
N ,  should probably be given more weight than N ,  in any resolution equa- 
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1 1.10 115 1.20 
o( 

FIG. 8A. Plot of Eq. (45) for B = 1.1. 
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tion, but, in view of the above discussion, it would be difficult to prove 
that this approximation is better than the Giddings’ approximation 
N,, = N,, and for the present one has to settle for the arithmetic average 
as being the best average. 

APPENDIX I: EQUATIONS EQUIVALENT TO 
THE PURNELL EQUATION IN T H E  LITERATURE 

The Purnell equation is the first resolution equation and the one most 
widely used. It is usually referred to in the literature as “the well-known 
resolution equation.” 

By an equivalent equation, it is meant that it leads to numerical answers 
identical with those given by the Purnell equation. Such equations can be 
reduced to the Purnell equation by rearrangement and substituting the 
symbols, called “current symbols,” given in this paper. Only one example 
is given here. 

The Snyder Equation 

As written in Ref. 5, the Synder equation reads 

Substituting current symbols, we find 

but K2Vs/V,,, = kz ,  and K J K ,  = l / a ,  so that 

JJWa - 1 k2 R,=--------- 4 a k , + 1  

which is the Purnell equation. 

APPENDIX II: EQUATIONS EQUIVALENT TO 
T H E  SAID EQUATION IN T H E  LITERATURE 

Three equations are given. It is shown that on substituting current 
symbols and rearranging, one gets the Said equation of resolution. 
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The Karger Equation 

As written in Ref. 4,  the Karger equation reads 

,,I% a - 1  k2 &=--- 
2(1 + n) a 1 + k2 

N = N,, n = w1/w2 
Term N will not be discussed here: it is a separate issue discussed in a 
separate section. 

On substituting current symbols we get 

(b) 

but 

also 

a = k2/kl ( 4  

Substituting for wl/w2 in (b) from (c), rearranging and then substituting 
for kJk, from (d), we get 

JR(a - 1) R, = 
(1 + a +$) 

which is the Said equation. One can easily show that the following is also 
an exact equation : 

When w1 = w2,  Eq. (a) reduces to the Purnell equation as pointed out by 
Karger, and Eq. (e) reduces to the Knox equation. 

It is worthwhile pointing out the misleading results one may run into 
when dealing with approximate resolution equations. Here we have two 
exact equations with the same approximation, namely w1 = H’,, but we 
get two different approximate relations leading to different answers. 
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The Giddings Equation 

As written in Ref. 6, the Giddings equation reads 

,fz uAK Rs=-- 4 1 + u K  

a = V,/Vm, AK = KII - KI 

By substituting current symbols, one gets 

but 
VS vs 
v m  Vm 
-Kz = k 2  and -K1 = k ,  

therefore 

also 

so that 

kzlkl = a 

JV a - 1  
2 

l + a + -  
R, = - 2 

kl 
which is the Said equation. 

The Conder-Purnell Equation 

As written in Ref. 34, the Conder-Purnell equation reads 
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where 

According to Eq. (1 1) on page 357 of Ref. 35, 2 in the elution mode is 
the argument t of the normal distribution. On substituting current symbols, 
we get 

N = ( ? )  2 

where 

also, from Eq. (15), 

t = 2R, 

substituting from Eq. (15) into (A) gives 

or 

dFa 
4 R, = 

Equations (C) and (B) give 

which is the Said equation. 
In the previous year (1969), Conder and Purnell utilized the Purnell 

equation in a paper (36) on the same subject. In the years that followed 
1970, Conder used the Said equation consistently in his publications (37). 
This indicates a switch to the Said equation by Conder and Purnell since 
1970. 
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APPENDIX 111: TO SHOW THAT THE GLUECKAUF 
EQUATION AS REPRODUCED IN REF. 34 

IS  NOT CORRECT 

As presented by Tranchant (34, p. 17), the Glueckauf equation reads 

a = &/4, 
z = fractional purity = 1 - q, where q is the fractional impurity. With 
current symbols, one gets 

where 

1 + k, a’ = - 
1 + k ,  

If Equation (11) is correct for any q, it is correct also for yl:l so that 

a ‘ + l  2 
Tx’ - 1 Vl:, 

N = 2(-) log, - 

The exact relation between ql : l ,  N,  and a‘ is given by Eq. (31): 

which is plotted in Fig. 7B. 
Values of N obtained from Eqs. (111) and (31) are tabulated in Table 3. 

The error in using Eq. (11) is also tabulated. It shows that this equation 

TABLE 3 

~~~ 

a’ = 1.1 a‘ = 1.2 

Eq. (31) Eq. (111) % Eq. (31) Eq. (111) % 
11:1 exact Glueckauf Error exact Glueckauf Error 

.1 720 2640 267 15 54 260 

.01 2420 4670 93 49 95 94 

.001 4200 6700 59 86 137 59 

.OOO1 6150 8730 42 125 178 42 
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is not correct. The error does not change if a in Eq. (I) was meant to be the 
distribution coefficient ratio k, /k , ,  in which case the dead volume is 
neglected. 

APPENDIX IV: COMPARISON BETWEEN R 
VALUES FOR DIFFERENT MODELS 

The comparison here is between three n values obtained from three 
equations derived on the basis of three different models. The constant in 
the first two equations is adjusted only for the purpose of meaningful 
comparison. The equations are 

n1 = 0.5 + In c1' (continuous model) (1') 

n2 = 0.5 - - (Giddings discontinuous model) (II') 
In a' 
In b 

0.51 (Scott's discontinuous model) (111') 

where nl ,  nz, and n3 are total peak capacities including the final peak. 
Also 

N - 2JR 
b = N + 2 & i i  

a' = k + 1 (because k for void peak = 0) 

and therefore 

k a ' - 1  
- 5 -  

k + l  a' 

An explicit relation for n3 in Eq. (111') is possible, leading to 

+ OS)] 
n3 = 

In b 

Values of nl, n2, and n3 were calculated for a' = 2 and 10, and for N 
values equal to 100, 400, 900, 1600, and 2500. The results are tabulated in 
Table 4. 

It is clear from Table 4 that the differences in II values are too small to 
justify a lengthy algebraic treatment leading to a relatively complicated 
formula. 
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TABLE 4 

n Values 

100 2.23 2.21 2.16 6.26 6.18 6.13 
400 3.97 3.95 3.93 12.01 11.98 11.95 
900 5.70 5.69 5.67 17.77 17.74 17.72 

1600 7.43 7.43 7.41 23.53 23.51 23.49 
2500 9.16 9.16 9.15 29.28 29.27 29.25 

At this point one may make a minor correction with regard to a state- 
ment in both Refs. 18 and 38. It is stated that Giddings assumes that 
( N  - 2JW)/(N + 2Jm) approaches unity and thus the peak capacities 
quoted by him are somewhat less than n3 values. Actually, the approxima- 
tion made by Giddings is 

N + 2 J Z N l  4 
N - 2 J N -  '3 

which converts Eq. (11') to Eq. (1'), and correspondingly n, values become 
equal to n ,  values, which are somewhat more and not less than n3 values, 
as evidenced by the values listed in Table 4. 

SYMBOLS 

(l/J%)S," e-t2/2 dt = Q 
area under the normal curve of error or error integral 
= t ,  inverse error integral or error integral argument 
distribution coefficient 
distribution coefficients for Components 1 and 2 
= KVJV, = capacity ratio, in Eq. ( l l ) ,  k = (k ,  + k J / 2  
capacity ratios for Components 1 and 2 
peak capacity between any two points 1 and 2 on a chroma- 
togram 
total peak capacity 
= n t + l  
total peak capacity including final and void peaks 
peak capacity based on R 
number of theoretical plates or plate number 
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number of theoretical plates for Components 1 and 2 
average plate number 
= (N, + N J 2 ,  arithmetic average plate number 
= . \JN1N2, geometric average plate number 
= 2N,N, / (Nl  + N2), harmonic average plate number 
= ( N ,  - N,)/ln ( N z / N l ) ,  plate number log mean average 
= 2Na - Nh, a plate number second average 
= ( l / N g  + 1/Nh)/2, a plate number second average 
= A ( t )  
= (F, - V,)/w,, resolution in terms of peak width arithmetic 
average 
= ('i?, - Vl)/wl, resolution in terms of peak width log average 
resolution according to the Knox equation 
resolution according to the Purnell equation 
resolution according to the Said equation 
argument of the error function 
retention volume 
any two retention volumes on the chromatogram 
peak maximum retention volumes for Components 1 and 2 
void peak retention volume 
volume of the stationary phase in the column 
volume of the mobile phase in the column 
peak width at the base 
peak width at the base for Components 1 and 2 
peak width arithmetic average 
peak width log mean average 

,- 

Greek Symbols 

= kz/kl = Kz/Kl ,  distribution coefficient ratio 
= (k, + l)/(k, + 1) = V,/Fl = wJwl = C,/CT~,  separation 
factor 
= N,/N,,  plate number ratio 

standard deviation of the chromatographic peak 
standard deviations of Peaks 1 and 2 
separation efficiency. It is the fractional impurity when a cut is 
made at equal fractional impurities on both sides 
separation efficiency for two equal peaks 

= NavINa 
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