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Abstract

It is shown that, in spite of the multiplicity of resolution equations in the
literature, there are only three basic relations: the Purnell, Knox, and Said
equations of resolution.

The Giddings equation for peak capacity in its differential form may also be
extended to include resolution, leading to an alternative definition for it in
which the width log mean average is used instead of the width arithmetic
average. This definition is based on the continuity of peak width variation along
the column and leads to numerical answers practically identical with those based
on the original definition.

This new definition of resolution, which is not an approximation of the origi-
nal one but stands on its own merits, gives strength to an already deduced and
simple peak capacity equation, which was thought to be approximate, as being
exact. This eliminates the necessity of lengthy algebraic derivations leading to
complicated equations which give no more than the results obtained by the
simple peak capacity equation.

Alternate resolution equations which are simple and exact were derived and a
chart for the separation efficiency #,., as a function of the number of theoretical
plates N and the separation factor o’ was prepared. The resolution R; can be
read on an extra scale in the plot. This chart may be used as a substitute for
the controversial Glueckauf chart.

The average plate number N used in the resolution equation was studied when
Ny # N,. The study leads to the conclusion that due to the large uncertainties in
both the experimental and theoretical determination of N, any suggestion for
N,, other than the simple arithmetic average cannot be justified.

Some erroneous equations and conclusions in the literature concerning
resolution and peak capacity are pointed out.
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INTRODUCTION

There are many resolution equations in the literature. They may look
different because they are written in different forms using different nota-
tions, but all of them belong to three basic equations. References I-7
represent only a partial list of these equations.

We will be concerned only with the development of a resolution equa-
tion for two overlapping Gaussian peaks. The base width of each peak
w varies with its retention volume V and the number of theoretical plates

N according to
7\? V\?
N = <;> = 16<—M:> )

o is the standard deviation of the peak.

Equation (1) follows from different theories of chromatography such
as the plate theory developed by Martin and Synge (8) and amplified by
this author (9), and the random walk theory developed by Giddings (10).

Another fundamental equation is the internationally accepted definition
for resolution:

V2 — Vl I72 — I71
e T R @

in which w, is the peak width arithmetic average.

We will assume that N is the same for Components 1 and 2. Whether it
is equal to N,, N,, or any of their averages goes under this assumption,
which may be expressed mathematically as

N1=N2=N (3)

The question concerning which N to use will be discussed separately in
a later section.

THE THREE BASIC RESOLUTION EQUATIONS

In spite of the multiplicity of resolution equations in the literature,
authors agree on the three well-known or basic resolution equations (11);
the Purnell (1), the Knox (2), and the Said (3) equations. For example, the
equation in Ref. 4 is a Said equation while that in Ref. 5 is a Purnell equa-
tion.

In order to make this study as complete and useful as possible, a brief
mention of the steps involved in the development of these equations is
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presented here. Beside the three fundamental Egs. (1), (2), and (3), the
following well-known relations are also required for the derivation of the
three basic resolution equations:

Vz = Vo(l + k) 4
Vi = Vo(l + ky) )

where ¥, is the void (air) peak retention volume and k; and k, are the
respective capacity factors for Components 1 and 2.
From Eq. (1) one gets

i

Vo[Vy = wylwy (6

The distribution ratio K is related to the capacity factor k by the formula
Vs
k=K 7

where ¥V and ¥, are the stationary and mobile phase volumes, respec-
tively.

The Purnell Equation

This is the first resolution equation in terms of «, N, and k, and the one
usually referred to in the literature as “the well-known resolution equa-
tion.” Quantity o is the capacity factor ratio

a = ky/ky = K,/K,
In the Purnell derivation, the following approximation in Eq. (2) was
made:
Kl';_wé =w, )
In this case Eq. (2) becomes
V.- " ,
R, =2 @
Substituting from Egs. (1), (4), (5), and (6) into Eq. (2'), one gets

JN a—1 /Na-1( k,
wr =g P = () ®

Introducing other parameters such as Ak for k, — ky, n for w,/w, or
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KV /V, for k, the Purnell equation may be written in several other forms
(Appendix I).

The Knox Equation

Here, the following approximation in Eq. (2) was made:
wy +w
1_2__2 =w, )
So that Eq. (2) becomes
-7
41

R, = 2"

and similarly, by substituting from Eqgs. (1), (4), (5), and (6) into Eq. (2")
gives

_\/Na—l—\/N kl
Rx="g —1=7@- Dy (10)
I+
kq

In spite of the simplicity of the Knox equation, it is not as widely quoted
as the Purnell equation.

The Said Equation

In this case no approximation is made in Eq. (2). By substituting from
Egs. (1), (4), (5), and (6) into Eq. (2), one gets

,_\/_]_\7 a—1 _\/_Na—l k
Re=7 72 a+ 11tk (in
o4+ 14—
k,
where
k= (k, + ky)/2 (12)

With little algebraic manipulation, the Said equation (Eq. 11) may also
be written in several other forms (Appendix II).

SEPARATION EFFICIENCY

The efficiency of a separation is often related to the purity of the frac-
tions obtained. The resolution concept as given by Eq. (2) does not
express the fractional impurity directly.
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FiG. 1. Two overlapping Gaussian and equal chromatographic peaks with the
cut at equal fractional impurity.

A relation exists between R, and the separation efficiency #,., for two
equal and overlapping Gaussian chromatographic peaks. Here, n,.;, as
defined by Glueckauf (12), is the fractional impurity when a cut is made
such that the fractional impurity is the same on both sides of the cut. This
author showed (I3) that the same value obtained for #,,, may be used
without modification and with little error for two unequal and overlapping
Gaussian peaks. By ““two chromatographic peaks” it is meant that Eq. (6)
is also satisfied as in Fig. 1 where V_V, represents the cut for equal impurity
ratios on both sides. It should be noted that it does not pass by the point
of intersection for two equal and overlapping Gaussian chromatographic
peaks. It is displaced a little toward the fast moving peak.

For equal impurities the arguments of the two normal distributions must
be equal so that

L=t =t (13)

or

L (14)
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This leads to

t= = = 2R, (15)

g, +0; Wt W
4
and therefore
r’l:l = A(t) = A(2Rs) (16)
or
14
Rs = EA (rx'l:l) (17)

A(t) is the area under the normal curve of error (error integral) as given
by the relation

1 [® _,
A(t) = \—/i‘-—;j‘t e PP gt = 0 (18)

and
A7HQ) =t (19)

is the inverse error integral inasmuch as the log function is the inverse of
the exponential function. Both the error and inverse error integral are
tabulated in the literature (14).

Equation (16) shows that ,,, vs R, is a straight line plot on probability
graph paper as in Fig. 2. By substituting from Eq. (11) into Eq. (16), one
gets the separation efficiency equation in terms of N, «, and k, so that

—a—1 k
a1 =A[*/Na+ 1k + 1] (20)

POSITION OF THE CUT V.V, FOR
EQUAL IMPURITY RATIO

Equation (1) shows that
5 = 21

Substituting into Eq. (14) gives

V.- 7,
7, 7,

C

v, -V
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FiG. 2. Plot of Eq. (16) on probability graph paper.

which leads to
TV W, 22
Equation (22) shows that for an equal impurity ratio between two equal
chromatographic and Gaussian peaks, the cut must be made at the
harmonic average of ¥, and V,, and not at their geometric average as
deduced by Glueckauf (12).

PEAK CAPACITY

Most of the credit in developing the theroretical treatment of peak
capacity goes to Giddings. Very little has been added to what he achieved
in his brief but excellent note (15) on the subject.

In this study a slight modification in the definition of peak capacity »
will be made. Here, we define » as the number of totally separated peaks
between any two points 1 and 2 on the elution curve. By “totally separated”
it is meant that tangents to peaks meet at the base line, in which case
R, = 1.
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F1G. 3. Schematic representation of totally separated peaks between points 1
and 2,

The total peak capacity #, is the peak capacity between the void peak
and the maximum of the last peak. Quantity #, is equal to n, + 1 so that
ny is the total number of peaks between and including both the void pzak
and the last peak. We also introduce the concept that z is not necessarily
an integer.

The mathematics needed for the peak capacity treatment is quite simple.
One needs no more than Eq. (1) and the Giddings peak capacity funda-
mental relation in its differential form (/6). The latter may be easily
deduced with reference to Fig. 3 as follows.

In Fig. 3(a), the peak width w does not change with V, contrary to the
requirement of Eq. (1). In this case the peak capacity # between points
1 and 2 is given by

n=AVw 23)
where AV =V, — V.
According to Eq. (1), w should, however, change continuously as shown

in Fig. 3(b) and, therefore, a differential equation must be set up and
integrated. Equation (23) in its differential form becomes

dn = dVjw 4)

which is the Giddings formula. Integrating between points ¥, and V,,
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one gets
Va
n= j> dViw 25)
Vi

When w is constant, one gets Eq. (23). For the actual case where w = f(V)
according to Eq. (1), one gets

v NdV NV,
n=§V17_Tln_V_; (26)

Equation (26) may be called the Giddings-Grushka equation. It was
Grushka (/7) who first integrated the Giddings differential equation (Eq.
24),

Similarly,
YN Y
ne ="y In 7, 1))
and
N VvV
n,=%—1n,—,§+1 (28)

where Vis the final peak retention volume. Quantities », n,, or #, are quite
easy to calculate from the above equations, or may be read from Fig. 4
where n is plotted vs ¥,/V, on a semilog graph with \/V as the param-
eter. The plot is a family of straight lines meeting at the origin.

Alternative and probably more convenient plots are given in Figs. 5A
and 5B which plot N vs n on log-log graph paper with o' as the parameter,
giving a family of parallel lines. Quantity o’ = V,/V; = W[V, = (1 + k;)/
(1 + k), and may be called the separation factor. Of course, a plot of n
vs N with o’ as the parameter can also be plotted easily.

The peak capacity # as given by Eq. (26) may be defined as the number
of continuously widening (or narrowing) peaks between points 1 and 2 on
the chromatogram.

RELATION BETWEEN RESOLUTION
AND PEAK CAPACITY

R, is defined mathematically according to Eq. (2). With reference to the
same equation, it may also be defined in words as being the number of
average (arithmetic) peak widths between two neighboring peak maxima.

If the Giddings formula (Eq. 24) is integrated between limits ¥, and 7,
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I

In this case, and in line with the definitions given above for peak capacity,
i would be the number of continuously varying peak widths between the
two neighboring peak maxima.

Comparison of this definition with the definition deduced from Eq. (2)
for R, shows that they are identical except for the continuity and dis-
continuity of the peak width. This shows that Eq. (29) can be used as the
basis for an alternative definition for resolution which may be given the
symbol R_:

_JN. 7,
L (30)

In terms of N, k, and o', one gets

= _JN. 14k \/N

n1+k1 Ino (30"
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FiG. 5A. Plot of Eq. (26) on log-log graph paper.
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Substituting for R, from Eq. (30') into Eq. (16) gives

N, 1+k N
Ny = A[\—/Z— nl—:Tj = A<—‘/2— In cx’) 31

Equation (31) is a simple relation between the separation efficiency 7, .,
and the parameters N, k;, and k,.
Equation (30) can be rearranged as

R=2 — (32)

A substitution from Eqgs. (1) and (6) into Eq. (32) leads to

- V,=-V, V-V
Rs=V2 1 _ 1 1 (33)

where w, is the width log mean average.
We now have two fundamental relations for resolution. They are the
last form of Eq. (2):

@

and the new expression

R, = (33)

Table 1 lists the values of w,/w, for different values of w,/w, of chroma-
tographic interest. Listed also are the corresponding percent deviations of
Eq. (33) from Eq. (2) and the percent deviations of Eq. (2') (Purnell ap-
proximation) from Eq. (2) for comparison.

If both Egs. (2) and (33) are considered two different approximations
of Eq. (2), then the error in Eq. (33) is negligibly small compared to that
in Eq. (2'), as can be seen from Table 1. When w,/w, (which is equal to
a’) is equal to 1.1, the error in Eq. (33) is less than 0.1 %, while the error in
the Purnell approximation is 60 times greater.

Equation (33), therefore, cannot be considered an approximation of
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TABLE 1
% Deviation % Deviation

W2 Wa of Eq. (33) of Eq. (2) Deviation
Wy Wi from Eq. ) from Eq. 2) ratio
1.00 1.0000 0.00 0.00

1.01 1.0000 0.00 0.50 600
1.02 1.0000 0.00 0.98 300
1.05 1.0002 0.02 2.38 120
1.10 1.0008 0.08 4.55 60
1.20 1.0028 0.28 8.33 30

Eq. (2). It is rather an alternative definition of resolution leading to
essentially the same answers. It may be used in place of Eq. (2) for the
purpose of convenient and dasy derivations, as in the case of peak capacity
calculations.

This leads us also to the important conclusion that the above treatment
of the peak capacity using the Giddings equation is an exact treatment
based on an alternative definition, R,, of resolution no less elegant than
the customary definition (Eq. 2) and leads to the same numerical values.
One also concludes that the algebraic treatments, encountered in Refs. 18
and 19 become less important if not completely replaced by the Giddings-
Grushka derivation (Appendix III).

Inasmuch as the Said equation of resolution is considered an exact
equation (4, 20-23), Eq. (30) is also an exact resolution equation leading
to essentially the same answers.

We note that R, and 5,,, can be easily calculated from Eqgs. (30) and (31),
respectively, or they may be obtained from Fig. 6A which is identical to
Fig. 4 except for the range on the ordinates. In other words, Fig. 6A is an
expansion of a small area around the origin in Fig. 4. The usefulness of
Fig. 6A was extended by adding an auxiliary scale to the right on which
.., may be read directly. The scale was prepared using Eq. (17) and tables
of the inverse error integral (/4). There is no difference between Figs. 6A
and 6B except that in the latter, the R, and #,,, scales have been switched
so that the #, ., scale becomes the main scale to the left and the R, scale is
the auxiliary scale to the right. Figure 7A is a plot of N vs R, for Eq. (30)
on a log-log graph with a’ as the parameter, giving a family of parallel
lines as in Fig. 5. An auxiliary upper scale on which #,,, may be read
directly was also prepared to increase the usefulness of the chart. Figure
7B is the same chart as Fig. 7A except that #,,, becomes the main lower
scale and R, is the auxiliary upper scale in Fig. 7B.
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THE GLUECKAUF CHART

The Glueckauf chart is a plot of the number of theoretical plates N vs
the separation efficiency # with the separation factor «’ as the parameter.
It suffers, however, from several drawbacks.

The original chart contains a relation between 7, ., for two equal peaks
and 7 for two unequal ones, which was shown to be incorrect by this author
(13), who showed, however, that the two quantities are close to one
another, thus correcting and at the same time simplifying its use. Since
then, new charts have been published taking into account this correction
(25, 26). Other authors (for example, in Refs. 27-29), apparently unaware
of this correction or the reference to it in the literature (24-26, 30, 31),
continue to publish the original uncorrected chart.

Although not explicitly stated, the parameter used in the Glueckauf
chart is the separation factor o' which includes the void volume. If the
exchange coeflicient ratio o is used instead, then the value of N obtained
is the number of theoretical plates when the void volume is neglected.

The chart was based on a complicated and also approximate equation,
and steps toward the chart’s construction are not indicated. Also, the 5
scale extends from 10~! to 10™#, which does not reflect the approximate
nature of the equations upon which the chart was constructed.

Aside from these drawbacks and except for large o’ values which are
less important than small values, the chart gives results not much different
from those obtained using the exact relation (Eq. 31). This is somewhat
contrary to the findings of Tang and Harris (32) who recommend against
the continued use of the Glueckauf chart. They based their conclusion
upon significant deviations from the Purnell equation. This equation itself
is an inexact one subject to the approximation given by Eq. (7) and there-
fore cannot be a satisfactory reference.

Figure 7B, while free of all the drawbacks of the Glueckauf chart,
retains its good features and contains an extra scale for R,. It is, therefore,
an ideal substitute for it. The Glueckauf chart may have some merit and
may be worth saving after correction and modification, but certainly not
the Glueckauf treatment of the plate theory. Besides being approximate,
it is also very complicated and has long since been replaced by better
treatments (9, 33). Some Glueckauf equations based on his treatment and
appearing in textbooks are not well defined, lead to wrong answers, and
are very difficult to trace in the original paper. An example of such equa-
tions is given in Ref. 34 and discussed in Appendix IV. This author recom-
mends against the utilization of these equations which should be deleted
from textbooks in future editions.
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THE AVERAGE PLATE NUMBER

Throughout the above treatment the assumption was made that N, =
N, = N. N is the best average plate number ¥, from which the subscript
“av” was dropped for convenience. In this section and because, here, we
are looking for this best average, the same subscript will be retained.

Since the two exact resolution equations, Egs. (11) and (30), are equiv-
alent, we choose the one easier to handle. In this case it is Eq. (11) so that

R = \/Nav(a — 1)

s > 34
2(1 + o+ k—l)

For N, # N,, Eq. (1) leads to

- N,

Vi = l/z—lw1 (3%5)
and

- N,

v, = ‘/4 2w, (36)

Substituting from Egs. (35), (36), (4), and (5) into Eq. (2) leads to the
exact resolution equation when N; # N,:

JNi@ 1)

(o 5+ 5+ V)]

From Egs. (34) and (37) one gets the exact relation for N,, when N, #
N,:

R, = 37

\/N—2<oc + 1 +£—>
1

\/Nav= ]_i2_+ 1 1 &
® Nl kl + Nl

Plate numbers N, and N, are two large numbers, and their ratio usually
does not differ much from unity. In this case different averages differ only
slightly from the arithmetic average N,.

At present the uncertainties in the values of N, and N, determined ex-
perimentally are much greater than the differences between their different
averages, and until these uncertainties fall below a certain level, the

(38)




14: 05 25 January 2011

Downl oaded At:

MULTIPLICITY OF RESOLUTION EQUATIONS 667

determination of R, and N,, using the relatively difficult Egs. (37) and (38)
will be unjustified. At least for the present, using N,, = N, as suggested
by Giddings (6) is sufficient.

For any two values such as N, and N, there are four primary or first
averages. They are the arithmetic (,), the log mean (N,), the geometric
(N,), and the harmonic (,) averages. They are defined by

1

N, = E(Nl + N,) 39
N2 - Nl

N =2 L 40

S I (VSN (40)

N, = JW,N, (41)
2NN,

M= N w, “2)

Other averages can be deduced by combining any two of the first averages;
these are called second averages. There are several of these but only two
of them are given here as examples.

2 2
N, =2N,—- N, = Nii—xz (43)
and
1 _ E[L + L]
Ny 2N, N,
N = 4NN, =< 2_\_/]\71]\—,2— >2= (\/N)Z (44)
" N, + N, + 2JN,N, \JN, + N, h

Introducing two symbols y,, and §, where
Yav = av/Na and ﬁ = NZ/NI
and substituting in Eq. (38) gives

28 <a+1+£)
o = \//3 + 1 ky (45)

a+\//?+kil(1+\/l7)

Table 2 lists the values of y,, for the above first and second averages for
two values of 8, namely, § = 1.1 and 1.2. The averages are arranged in
descending order according to their magnitudes.
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TABLE 2

y Values for Different Averages

First Second B=1.1 p=12
_2(+ 8y
v = S50 1.0023 1.0083
Ya = 1 1 1
ey 0.9992 0.99
_ 24/
r=1L5 0.9989 0.9959
- 8 0.9983 0.9938
Yo =T+ A + VBF ' ‘
4p 0.9977 0.9917

T TE PR

N,,/N, or y,, is a function of 8, k,, and «, as can be seen from Eq. (45).
In Figs. 8A and 8B, y,, is plotted for different values of k, and for f
values equal to 1.1 and 1/1.1 (Fig. 8A) and f values equal to 1.2 and 1/1.2
(Fig. 8B).

The figure shows that at a« = 0, y,, is very close to y,, but for practical
values of « and k,, y,, could be any of the above first and second averages.

Vink (19) deduced an equation for N,, which reads

which is equivalent to N,, as shown above. The Vink average is a function
of N; and N, only and not of k, or a, contrary to Figs. 8A and 8B. The
fact that the author was able to pinpoint a secondary average from a
crowded spectrum of first and second averages is due to an unjustified
approximation made in the course of the derivation. The Vink average is,
therefore, not correct.

Table 2 also shows that, even if the Vink average were correct, y,, is
too close to 1 to justify using a difficult N, average instead of the simple
N, average.

Karger (4) uses the approximation

Nao = N2 (47)

N, should probably be given more weight than N, in any resolution equa-
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FiG. 8A. Plot of Eq. (45) for = 1.1.
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FiG. 8B. Plot of Eq. (45) for § = 1.2.

669



14: 05 25 January 2011

Downl oaded At:

670 SAID

tion, but, in view of the above discussion, it would be difficult to prove
that this approximation is better than the Giddings’ approximation
N, = N,, and for the present one has to settle for the arithmetic average

as being the best average.

APPENDIX |I: EQUATIONS EQUIVALENT TO
THE PURNELL EQUATION IN THE LITERATURE

The Purnell equation is the first resolution equation and the one most
widely used. It is usually referred to in the literature as “the well-known
resolution equation.”

By an equivalent equation, it is meant that it leads to numerical answers
identical with those given by the Purnell equation. Such equations can be
reduced to the Purnell equation by rearrangement and substituting the
symbols, called “current symbols,” given in this paper. Only one example
is given here.

The Snyder Equation
As written in Ref. 5, the Synder equation reads
1 KN\ = K,
= 4<1 B 7<§>‘/NK2 + V0w
Substituting current symbols, we find

R = 4(‘ - E)*/ N vV,

but K,V,/V,, = k,, and K,/K, = l/a, so that

_Fa-l_k,
T4

R o ky+1

S

which is the Purnell equation.

APPENDIX 1I: EQUATIONS EQUIVALENT TO
THE SAID EQUATION IN THE LITERATURE

Three equations are given. It is shown that on substituting current
symbols and rearranging, one gets the Said equation of resolution.
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The Karger Equation

As written in Ref. 4, the Karger equation reads

_ .\/N a—l k2
Xl +n o 1+k @)

N=N2, n=W1/W2

R,

Term N will not be discussed here: it is a separate issue discussed in a
separate section.
On substituting current symbols we get

VN a—-1 k

Rs,2(l+$—:> o 14k, (®)

but
=T TE ©

also
@ = kyfk, (d)

Substituting for w,/w, in (b) from (c), rearranging and then substituting
for k,/k, from (d), we get

_ JN@ ~ 1)

s 2
2(1+a+7€-1)

which is the Said equation. One can easily show that the following is also
an exact equation:

JN ky
R g~ ITEE N

R

When w, = w,, Eq. (a) reduces to the Purnell equation as pointed out by
Karger, and Eq. (e) reduces to the Knox equation.

It is worthwhile pointing out the misleading results one may run into
when dealing with approximate resolution equations. Here we have two
exact equations with the same approximation, namely w; = w5, but we
get two different approximate relations leading to different answers.
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The Giddings Equation

As written in Ref. 6, the Giddings equation reads
_JN aAK

R, = 4 1+ aK
a=VVn AK = Ky — K,

Ky + K N_N2+N1
- 2 - 2
By substituting current symbols, one gets
Vs
R —l/]_'v ‘V;(Kz - K1)
sT 4 ) Vs K, + K,
Ty \T 2
but
V. Vs
VSKZ = k2 and I_/-Kl = k1
therefore
ENLEEY
sT 4 ] k, + k,
T3
also
kylk, =«
so that
R, = \_/"_—V a1
2 14+a+ 2
ky

which is the Said equation.

The Conder-Purnell Equation

As written in Ref. 34, the Conder-Purnell equation reads

N,

2Z)\?
req = _a_

SAID
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o=251)()

o= VNz/VNﬂ k = VN/VMO

where

1
Vy = E[VNI + ¥yl

According to Eq. (11) on page 357 of Ref. 35, Z in the elution mode is
the argument ¢ of the normal distribution. On substituting current symbols,

we get
2t\?
v=(3) @
where
o~ 1 k
a= 2(« n 1)(1 ¥ k) ®)
also, from Eq. (15),
t = 2R,

substituting from Eq. (15) into (A) gives
2
N = (4Rs>
a

R, = 24@ a ©

or

Equations (C) and (B) give

R - JN (cx -1 k'
sT T2 a+1)(1 +k>
which is the Said equation.

In the previous year (1969), Conder and Purnell utilized the Purnell
equation in a paper (36) on the same subject. In the years that followed
1970, Conder used the Said equation consistently in his publications (37).
This indicates a switch to the Said equation by Conder and Purnell since
1970.
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APPENDIX Hli: TO SHOW THAT THE GLUECKAUF
EQUATION AS REPRODUCED IN REF. 34
IS NOT CORRECT

As presented by Tranchant (34, p. 17), the Glueckauf equation reads

o 4+ 1)? 2
n = 2(0( — 1> logel—_:—% (I)

o = t,/t,

7 = fractional purity = 1 — #, where 5 is the fractional impurity. With
current symbols, one gets

N = .2(2: y 1)2 log. (1)
where
, L+ k
A
If Equation (II) is correct for any #, it is correct also for #,., so that
N = 2(2 i DZ log, ;12—1 (ITT)

The exact relation between #7,,(, ¥, and o’ is given by Eq. (31):

N
Ny = A(%_ h] “’)

which is plotted in Fig. 7B.
Values of N obtained from Egs. (III) and (31) are tabulated in Table 3.
The error in using Eq. (II) is also tabulated. It shows that this equation

TABLE 3
N Values
o =11 o =12
Eq. (31) Eq. (1) % Eq. 31) Eq. (1)) %
1:1 exact Glueckauf Error exact Glueckauf  Error
1 720 2640 267 15 54 260
.01 2420 4670 93 49 95 94
.001 4200 6700 59 86 137 59

.0001 6150 8730 42 125 178 42
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is not correct. The error does not change if « in Eq. (I) was meant to be the
distribution coefficient ratio k,/k,, in which case the dead volume is
neglected.

APPENDIX 1V: COMPARISON BETWEEN n
VALUES FOR DIFFERENT MODELS

The comparison here is between three n values obtained from three
equations derived on the basis of three different models. The constant in
the first two equations is adjusted only for the purpose of meaningful
comparison. The equations are

N
n =05+ T In o (continuous model) a1
In o g . .
n, = 0.5 — ™3 (Giddings discontinuous model) (1]
K 4 T1—bm e ,
i~ \T]Vl}l———b_ - 0.5:' (Scott’s discontinuous model) (I1I')

where n, n,, and n, are total peak capacities including the final peak.
Also

_ N-2JN
T N+2JN
o =k +1 (because k for void peak = 0)

b

and therefore
ko —1
k+1 o
An explicit relation for ny in Eq. (II') is possible, leading to
No — 1
In [1 -1 - b)(ﬁL ol 0.5)]
S 4 o |
3 Inbd

Values of n,, n,, and n; were calculated for ' = 2 and 10, and for N
values equal to 100, 400, 900, 1600, and 2500. The results are tabulated in
Table 4.

It is clear from Table 4 that the differences in z values are too small to
justify a lengthy algebraic treatment leading to a relatively complicated
formula.
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TABLE 4
n Values
o =2 o =10

N n n; n3 ny na i3

100 2.23 2.21 2.16 6.26 6.18 6.13

400 3.97 3.95 3.93 12.01 11.98 11.95

900 5.70 5.69 5.67 17.77 17.74 17.72
1600 7.43 7.43 7.41 23.53 23.51 23.49
2500 9.16 9.16 9.15 29.28 29.27 29.25

At this point one may make a minor correction with regard to a state-
ment in both Refs. 18 and 38. It is stated that Giddings assumes that
(N — 2/N)/(N + 2,/N) approaches unity and thus the peak capacities
quoted by him are somewhat less than #; values. Actually, the approxima-
tion made by Giddings is

N+2J/N Lot
N_2/NEYYN

which converts Eq. (II") to Eq. (I'), and correspondingly n, values become
equal to n, values, which are somewhat more and not less than n; values,
as evidenced by the values listed in Table 4.

SYMBOLS
A (YYZm)fP e dt = Q

area under the normal curve of error or error integral
A7YQ) = ¢, inverse error integral or error integral argument
K distribution coefficient
K, K, distribution coefficients for Components 1 and 2
k = KV /V, = capacity ratio, in Eq. (11), k = (k; + k,)/2
ki, ky capacity ratios for Components 1 and 2
n peak capacity between any two points 1 and 2 on a chroma-

togram
n, total peak capacity
n, =n, + 1

total peak capacity including final and void peaks
peak capacity based on R
number of theoretical plates or plate number

Z 3
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N, N, number of theoretical plates for Components 1 and 2
N,, average plate number
N, = (N, + N,)/2, arithmetic average plate number
N, = ./N.N,, geometric average plate number
N, = 2N N,/(N, + N,), harmonic average plate number
N, = (N, — N,)/In (N,/N,), plate number log mean average
N, = 2N, — N,, a plate number second average
Ny, = (1/N, + 1/N)/2, a plate number second average
0 =40
R, = (V, — V,))/w,, resolution in terms of peak width arithmetic
average
R, = (V, — V,)/w,, resolution in terms of peak width log average
R; resolution according to the Knox equation
R, »  resolution according to the Purnell equation
R, resolution according to the Said equation
t argument of the error function
V  retention volume
Vi, V, any two retention volumes on the chromatogram
Vi, V,  peak maximum retention volumes for Components 1 and 2
V,  void peak retention volume
Vv, volume of the stationary phase in the column
V. volume of the mobile phase in the column
w peak width at the base
Wi, Wy peak width at the base for Components 1 and 2
W, peak width arithmetic average
wy peak width log mean average
Greek Symbols
o = k,/k, = K,/K,, distribution coefficient ratio
o = (ks + D/(k; + 1) = V,/V, = wy/w, = 6,/0,, separation
factor
B = N,/N,, plate number ratio
Y = Nu/N,
o standard deviation of the chromatographic peak
Gy, 0, standard deviations of Peaks 1 and 2
n separation efficiency. It is the fractional impurity when a cut is

Ni:1

made at equal fractional impurities on both sides
separation efficiency for two equal peaks
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